Supporting Information ## Adhesion Energy of MoS₂ Thin Films on Silicon-Based Substrates Determined *via* the Attributes of a Single MoS₂ Wrinkle Shikai Deng¹, Enlai Gao², Zhiping Xu² and Vikas Berry^{1,*} ¹Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, IL 60607, USA ²Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China *Corresponding author: vikasb@uic.edu **Figure S1. Small Wrinkles on the thick MoS₂ sheet.** (a) Optical image of a MoS2 sheet on SiO2 surface; (b) Field Emission Scanning Electron Microscope (FESEM) image of the same MoS2 flake as (a); (c) Atomic Force Microscope image of the square area 1 in (a), small wrinkles induced by lines defects and deformations; (d) and (e) FESEM and AFM images of the square area 2 in (a), the small wrinkle is believed to be formed by defect induced partial delamination of the top few layers; (f) Height profile of the dashed line in (e), the wrinkle is sharp with small amplitude. AFM characterization was conducted in WITec Alpha-300-RA system. **Figure S2. Sharp and asymmetric wrinkles on a MoS₂ sheet.** (a) Field Emission Scanning Electron Microscope (FESEM) image of the same MoS2 flake as (a); (b) Atomic Force Microscope image of same flake in (a); (c) Height profile of the dashed line in (b), the wrinkle is sharp with large amplitude. AFM characterization was conducted in WITec Alpha-300-RA system.